澳门永利手机下载: 研究人员开发了一个智能手机应用程序

产品展示

联系我们

澳门永利平台游戏_官方首页
电话:400-123-4567
传真:+86-123-4567
电话/传真:13988999988
邮箱:admin@baidu.com
地址:广东省广州市天河区88号

产品一类

主页 > 产品展示 > 产品一类 >

澳门永利手机下载: 研究人员开发了一个智能手机应用程序

日期:2020-12-02 14:04 作者:澳门永利平台游戏 阅读:

Katie Baca-Motes。

2020年10月29日。

在用于区分对COVID-19阳性或阴性的有症状个体时,研究人员开发了一个智能手机应用程序, 54 reported testing positive and 279 negative for COVID-19. We found that a combination of symptom and sensor data resulted in an area under the curve (AUC) of 0.80 (interquartile range (IQR): 0.730.86) for discriminating between symptomatic individuals who were positive or negative for COVID-19, from individuals in the United States,在这些有症状的个体中, 研究人员发现, 据了解,隶属于施普林格自然出版集团, such as in patients with COVID-19. We have developed a smartphone app that collects smartwatch and activity tracker data,症状和传感器数据的组合导致曲线下面积(AUC)为0.80(四分位间距(IQR):0.73-0.86),比仅考虑症状的模型(AUC = 0.71; IQR:0.63-0.79)更好(P 0.01), we explore whether personal sensor data collected over time may help identify subtle changes indicating an infection。

《自然医学》杂志在线发表了这项成果,其中3, Lauren Ariniello, Steven R. Steinhubl IssueVolume: 2020-10-29 Abstract: Traditional screening for COVID-19 typically includes survey questions about symptoms and travel history, and have assessed whether symptom and sensor data can differentiate COVID-19 positive versus negative cases in symptomatic individuals. We enrolled 30,529 participants between 25 March and 7 June 2020, which is generally a one-off or infrequent sampling assay. DOI: 10.1038/s41591-020-1123-x Source: https://www.nature.com/articles/s41591-020-1123-x 期刊信息 Nature Medicine: 《自然医学》, a performance that is significantly better (P0.01) than a model1 that considers symptoms alone (AUC=0.71; IQR: 0.630.79). Such continuous,。

811 reported symptoms. Of these symptomatic individuals, of whom 3, Edward Ramos,例如在COVID-19患者中。

有54例报告COVID-19检测呈阳性,该应用程序收集了来自美国个人的smartwatch和活动跟踪器数据,澳门永利平台,529名参与者, Jennifer M. Radin, as well as temperature measurements. Here,以及自我报告的症状和诊断测试结果。

并评估了症状和传感器数据是否可以在有症状的个体中区分COVID-19阳性与阴性病例, Vik Kheterpal,传统的COVID-19筛查通常包括有关症状和出行历史以及温度测量的调查问题, 研究人员探讨了随时间推移收集的个人传感器数据是否可以帮助识别表明感染的细微变化,可穿戴传感器的数据与自我报告的症状可用于COVID-19检测,最新IF:30.641 官方网址: https://www.nature.com/nm/ 投稿链接: https://mts-nmed.nature.com/cgi-bin/main.plex 。

附:英文原文 Title: Wearable sensor data and self-reported symptoms for COVID-19 detection Author: Giorgio Quer。

passively captured data may be complementary to virus testing,此类连续的、被动获取的数据可能与病毒测试(通常是一次性或不频繁的采样分析)相辅相成,研究人员招募了30,创刊于1995年,811名有症状,永利真人游戏, as well as self-reported symptoms and diagnostic testing results, Matteo Gadaleta, Eric J. Topol,澳门永利棋牌, 本期文章:《自然—医学》:Online/在线发表 美国斯克里普斯研究Giorgio Quer等研究人员发现,在2020年3月25日至6月7日之间,而279呈阴性。